Sópra-Educação
  • Agro-pecuária
  • Biologia
  • Física
  • Geografia
  • História
  • Pedagogia
  • Química
  • Trabalhos
No Result
View All Result
Plugin Install : Cart Icon need WooCommerce plugin to be installed.
Sópra-Educação
  • Agro-pecuária
  • Biologia
  • Física
  • Geografia
  • História
  • Pedagogia
  • Química
  • Trabalhos
No Result
View All Result
Plugin Install : Cart Icon need WooCommerce plugin to be installed.
Sópra-Educação
No Result
View All Result
Home Uncategorized

Fotossíntese

Benney Muhacha by Benney Muhacha
Maio 21, 2022
in Uncategorized
0 0
0
Fotossíntese

Introdução

Fotossíntese é um processo físico-químico, a nível celular, realizado pelos seres vivos clorofilados, que utilizam dióxido de carbono e água, para obter glicose através da energia da luz solar, de acordo com a seguinte equação:

Luz solar + 12H2O + 6CO2 → 6O2 + 6H2O + C6H12O6

A fotossíntese inicia a maior parte das cadeias alimentares na Terra. Sem ela, os animais e muitos outros seres heterotróficos seriam incapazes de sobreviver porque a base da sua alimentação estará sempre nas substâncias orgânicas proporcionadas pelas plantas verdes.

Conteúdos

A relação da cor verde das plantas com a luz

Aristóteles tinha observado e descrito que as plantas necessitavam de luz solar para adquirir a sua cor verde. No entanto, só em 1771, a fotossíntese começou a ser estudada por Joseph Priestley. Este químico inglês, confinando uma planta numa redoma de cristal comprovou a produção de uma substância que permitia a combustão e que, em certos casos, avivava a chama de um carvão em brasa. Posteriormente, concluiu-se que a substância observada era o gás oxigênio.

A descoberta da fotossíntese

Em 1778, Jan Ingenhousz, físico-químico neerlandês, verificou que uma vela colocada dentro de um frasco fechado não se apagava, desde que houvesse também no frasco partes verdes de plantas e o frasco estivesse exposto à luz, ou seja, que na presença de luz, as plantas libertam oxigénio.1

A incorporação da água pelas plantas

Nicolas-Théodore de Saussure, já no início do século XIX descobriu que os vegetais incorporavam água em seus tecidos. Com o passar do tempo, os avanços no campo óptico e as tecnologias de estudo aprimoradas, possibilitaram os conhecimentos em relação a nutrição vegetal.

Células vegetais com cloroplastos visíveis.

Uma observação importante foi que o azoto, assim como diversos sais e minerais, era retirado do solo pelas plantas e que a energia proveniente do Sol se transformava em energia química, ficando armazenada numa série de produtos em virtude de um processo que então acabou por ser chamado de fotossíntese.

A substância chamada de clorofila foi isolada na segunda década do século XIX. Ainda naquele século, descobriu-se que a clorofila era a responsável pela cor verde das plantas, além de desempenhar um papel importante na síntese da matéria orgânica. Julius von Sachs demonstrou que a clorofila se localizava nos chamados organelos celulares, que, por meio de estudos mais apurados, foram chamados de cloroplastos.

A reprodução do ciclo da clorofila em laboratório

Ao avançarem as técnicas bioquímicas, em 1954 foi possível o isolamento e extracção destes organelos. Foi Daniel Israel Arnon quem obteve cloroplastos a partir das células do espinafre, conseguindo reproduzir em laboratório as reações completas da fotossíntese.

As etapas da fotossíntese

Com estas técnicas, descobriu-se, por exemplo, que a fotossíntese ocorre ao longo de duas etapas:

A fase fotoquímica, fase luminosa ou fase clara (fase dependente da luz solar) é a primeira fase do processo fotossintético. Essa fase ocorre nos tilacoides. Seu evento principal é a fotofosforilação, que é a adição de fosfato inorgânico (Pi) ao difosfato de adenosina (ADP).

A energia luminosa é captada por meio de pigmentos fotossintetizantes, capazes de conduzi-la até o centro de reação. Tal centro é composto por um par de clorofilas α, também denominado P700. Os elétrons excitados da P700 saem da molécula e são transferidos para uma primeira substância aceptora de elétrons, a ferredoxina.

Esta logo os transfere para outra substância, e assim por diante, formando uma cadeia de transporte de elétrons. Tais substâncias aceptoras estão presente na membrana do tilacóide. Nessa transferência entre os aceptores, os elétrons vão liberando energia gradativamente e esta é aproveitada para transportar hidrogênio iônico de fora para dentro do tilacóide, reduzindo o pH do interior deste.

A redução do pH ativa o complexo protêico “ATP sintetase”. O fluxo de hidrogênios iônicos através do complexo gira, em seu interior, uma espécie de “turbina proteica”, que promove a fosforilação de moléculas de adenosina difosfato dando origem à adenosina trifosfato (ATP). Ao chegarem ao último aceptor, os elétrons têm nível energético suficientemente baixo e retornam ao par de clorofilas ‘a’, fala-se em fotofosforilação cíclica.

Porém, existe outra forma de fosforilação, a fotofosforilação acíclica onde os elétrons das moléculas de clorofila ‘a’ (P700), excitados pela luz, são captados pela ferredoxina, mas ao em vez de passarem pela cadeia transportadora são captados pelo NADP (nicotinamida adenina dinucleotídeo Fosfato) e não retornam para o P700. Este fica temporariamente deficiente de elétrons.

Esses elétrons são repostos por outros provinientes de outro Em seguida passa aos citocromos e plastocianina até serem captados pelo P700, que se recompõe. Este processo de transporte também promove a síntese do (ATP). Já o P680 fica deficiente de elétrons. Esses elétrons serão repostos pela fotólise da água. A quebra da molécula da água por radiação (fotólise da água) produz iôns de hidrogênios e hidróxidos.

Os elétrons dos iôns hidróxidos são utilizados para recompor o P680 e os iôns hidrogênio são aceptados pelo NADP, com isso ocorre a formação de água oxigenada (H2O2) oriunda da reação de síntese entre as hidroxilas. A água oxigenada é decomposta pela célula em água e O2 sendo este último liberado do processo como resíduo. Com a repetição do processo forma-se o aporte energético e de NADPHs necessários para a fase escura.

Equação: 12H2O + 6NADP + 9ADP + 9P -(luz)→ 9ATP + 6NADPH2 + 3O2+ 6H2O

Organismos fotossintetizadores

Além das plantas verdes, incluem-se entre os organismos fotossintéticos, as algas (como as diatomáceas, as euglenófitas), as cianofíceas (algas verde-azuladas) e diversas bactérias.

Fatores que afetam:

  • Concentração de dióxido de carbono: É geralmente o fator limitante da fotossíntese para as plantas terrestres em geral, devido a sua baixa concentração na atmosfera, que é em torno de 0,04%.
  • Temperatura: Para a maioria das plantas, a temperatura ótima para os processos fotossintéticos está entre 30 e 38 °C . Acima dos 45°C a velocidade da reação decresce, pois cessa a atividade enzimática.
  • Água: A água é fundamental como fonte de hidrogênio para a produção da matéria orgânica. Em regiões secas as plantas têm a água como um grande fator limitante.
  • Morfologia foliar

Ponto de compensação fótico

É chamado “ponto de compensação fótico” o instante em que as velocidades de fotossíntese e respiração são exatamente ou simplesmente as mesmas. Neste instante toda a glicose produzida na fotossíntese é “quebrada” na respiração, e todo dióxido de carbono(CO2) gasto na fotossíntese é produzido na respiração.

A importância da fotossíntese

A fotossíntese é o principal processo de transformação de energia na biosfera. Ao alimentarmo-nos, parte das substâncias orgânicas, produzidas graças à fotossíntese, entram na nossa constituição celular, enquanto outras (os nutrientes energéticos) fornecem a energia necessária às nossas funções vitais, como o crescimento e a reprodução. Além do mais, ela fornece oxigênio para a respiração dos organismos heterotróficos. É essencial para a manutenção da vida na Terra.

Subprodutos remotos da fotossíntese

De acordo com a teoria da geração orgânica do petróleo, indiretamente energia química presente no petróleo e no carvão, que são utilizados pelo ser humano como combustíveis, têm origem na fotossíntese, pois, são produtos orgânicos provenientes de seres vivos (plantas ou seres que se alimentavam de plantas) de outras eras geológicas.

Pigmentos fotossintéticos

Os pigmentos fotossintéticos são substâncias capazes de absorver luz visível utilizada no processo fotossintético. Os mais importantes são as clorofilas (a, b, c e d), os carotenoides (carotenos e xantofilas) e as ficobilinas (ficoeritrina e ficocianina).

As clorofilas são pigmentos fotossintéticos de cor verde e ocorrem em todos os eucariontes fotossintéticos e nas cianobactérias.

No grupo dos carotenoides, os carotenos têm cor alaranjada, surgindo em todos os organismos fotossintéticos, com exceção das bactérias. As xantofilas, pigmentos de cor amarela, encontram-se nas algas castanhas e nas diatomáceas.

As ficobilinas surgem nas algas vermelhas e nas cianobactérias, sendo a ficobilina um pigmento de cor avermelhada e a ficocianina azul.

Os diferentes tipos de pigmentos fotossintéticos apresentam estruturas diferentes, captando radiações de diferente comprimento de onda, o que justifica a coloração diferente. O padrão de absorção de cada tipo de pigmento é denominado espetro de absorção.

As radiações mais eficientes para o fenómeno fotossintético situam-se nas faixas do espetro luminoso vermelho-alaranjada e azul-violeta.

Os principais pigmentos fotossintéticos presentes nas plantas são a clorofila a e b, os carotenos e as xantófilas.

A clorofila a funciona como pigmento fotossintético primário ou fundamental, sendo essencial para o processo fotossintético nos organismos em que se encontra. As clorofilas b e c, os carotenoides e as ficobilinas são pigmentos fotossintéticos acessórios ou auxiliares, não substituem o papel da clorofila a. Estes pigmentos ampliam o espetro de absorção da planta, mas a energia luminosa que absorvem é transferida para a clorofila a.

Os principais pigmentos fotossintéticos são as clorofilas, mas existem também pigmentos acessórios como as ficobilinas e os carotenos.

Cada tipo de pigmento tem uma car característica e absorve também radiações com comprimentos de onda característicos.

A luz solar é constituída por diferentes espectros, consoante o comprimento de onda e o nível de energia dos fotões que constituem o raio luminoso. O olho humano apenas consegue receber um conjunto limitado de radiações. A luz que o ser humano consegue visualizar chama-se luz visível.

Espectro electromagnético. A luz visível ao Homem é apenas a que apresenta um comprimento de onda entre os 400nm e os 750nm.

O gráfico que se segue relaciona o espectro de absorção de cada um dos tipos de pigmentos com o espectro de acção da fotossíntese. Como se pode observar, quanto maior a capacidade de absorção de radiação dos pigmentos, maior a taxa fotossintética. Estes dados confirmam que a luz e os pigmentos fotossintéticos são fundamentais para a ocorrência da fotossíntese.

Espectro de absorção dos diferentes pigmentos fotossintéticos comparado com o espectro de absorção da fotossíntese. É o somatório de todos os espectros de absorção que permite que a fotossíntese consiga ser mais eficaz num maior número de comprimentos de onda.

Os vários pigmentos absorvem radiações em diferentes comprimentos de onda, o que, na realidade, permite alargar o espectro de acção da fotossíntese a uma maior gama de radiações.

Porque é que as folhas são verdes?

Da quantidade de luz que incide numa folha, parte é absorvida e a que resta é reflectida. O nosso olho capta essa luz que é reflectida. Agora repara bem no comprimento de onda que as clorofilas absorvem. A cor verde corresponde ao somatório dos comprimentos de onda que não são absorvidos pelos pigmentos fotossintéticos.

Os fotões provenientes da radiação luminosa fazem com que os electrões das moléculas de clorofila passem para um estado excitado e mais energético, sendo facilmente transferidos para outras moléculas de clorofilas que lhes estejam próximas.

Outras Considerações

Existem diferentes tipos de pigmentos fotossintéticos, com diferentes concentrações em diferentes organismos. Os mais importantes são as clorofilas, os carotenoides e as ficobilinas.

Nas plantas, os pigmentos fotossintéticos estão organizados nos cloroplastos; os diferentes pigmentos fotossintéticos, como têm estruturas diferentes, completam-se na captação de radiações de diferentes comprimentos de onda; nas plantas superiores, as clorofilas a e b são os pigmentos mais eficientes na absorção da energia luminosa; as radiações mais eficientes para a fotossíntese são as absorvidas pelos pigmentos nas faixas vermelho-alaranjado e azul-violeta.

Conclusão

Em suma a fotossíntese é um processo realizado pelas plantas para produção de seu próprio alimento. De forma simples, podemos entender que a planta retira gás carbônico do ar e energia do Sol. Os figmentos fotossintéticos são substâncias capazes de absorver a luz utilizada na fotossíntese. Eles captam a energia necessária às reações químicas que constituem a fotossíntese. Nessas reações químicas é produzido oxigénio, que é expulso para a atmosfera.

Sem a fotossíntese, não existiria vida em nosso planeta, pois é através dela que se inicia toda a cadeia alimentar. Daí a grande importância das plantas, vegetais verdes e alguns outros organismos.

 Além disso, como já vimos, a medida em que a planta produz glicose ela elimina oxigênio, e sem oxigênio é impossível sobreviver.

Referências Bibliográficas

https://pt.wikipedia.org/wiki/Fotossíntese

www.sobiologia.com.br/conteudos/bioquimica/bioquimica9.php

https://pt.wikipedia.org/wiki/Pigmento_fotossint%C3%A9tico

http://biogeolearning.com/site/v1/biologia-10o-ano-indice/unidade-1-obtencao-de-materia/fotossintese-estrutura-do-cloroplasto/pigmentos-fotossinteticos/#sthash.rckQPaKn.dpuf

ShareTweetShare
Benney Muhacha

Benney Muhacha

Mestrando Gestão de Projetos, Licenciado em História e Bacharel em Administração. Jovem moçambicano apaixonado pelas TICs, é CEO e editor de conteúdo dos blogs: Sópra-Educação, Sópra-Vibes, Sópra-Vagas e Sópra-Educação.com/exames

Related Posts

Tipos de seguro em Moçambique e seu papel
Uncategorized

Tipos de seguro em Moçambique e seu papel

Março 17, 2023
Banco mundial
Uncategorized

Tipos de banco em Moçambique e o seu papel

Março 17, 2023
Papel das Alfândegas em Moçambique
Uncategorized

Papel das Alfândegas em Moçambique

Março 17, 2023
O Sétimo Juramento (Resumo) Paulina Chiziane
Uncategorized

Niketche: uma história de poligamia (Resumo) – Paulina Chiziane

Março 11, 2023
Next Post
Delinquência Juvenil em Angola

Delinquência Juvenil em Angola

Sópra-Educação

O maior portal de educação em Moçambique em todos os níveis

  • Termos de Uso
  • Política de Privacidade

Todos direiros reservados @ Sópra-Educação

No Result
View All Result
  • Home
    • Home – Layout 1
    • Home – Layout 2
    • Home – Layout 3
    • Home – Layout 4
    • Home – Layout 5
  • Video

Todos direiros reservados @ Sópra-Educação

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Usamos cookies em nosso site para fornecer a experiência mais relevante, lembrando suas preferências e visitas repetidas. Ao clicar em “Aceitar”, você concorda com o uso de TODOS os cookies.
Cookie settingsACEITAR
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Sempre activado
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDuraçãoDescrição
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
GUARDAR E ACEITAR